Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

نویسندگان

  • Amin A. Moghadas
  • Mehdi Shadaram
چکیده

In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Fault Location in MTDC Grids with Non-Homogeneous Transmission Lines Utilizing Distributed Current Sensing Technology

This paper presents a new method for locating faults in multi-terminal direct current (MTDC) networks incorporating hybrid transmission media (HTMs), including segments of underground cables (UGCs) and overhead lines (OHLs). The proposed travelling wave (TW) type method uses continuous wavelet transform (CWT) applied to a series of line current measurements obtained from a network of distribute...

متن کامل

Unique Solution of Short Pulse Propagation in Nonlinear Fiber Bragg Grating

In this study, a new numerical method is introduced to obtain the exact shape of output pulse in the chalcogenide fiber Bragg grating (FBG). A Gaussian pulse shape with 173 ps width is used as an input pulse for lunching to a 6.6 mm nonlinear FBG. Because of bistable and hysteresis nature of nonlinear FBG the time sequence of each portion of pulse is affected the shape of output pulse. So we di...

متن کامل

Optimization of Bistability in Nonlinear Chalcogenide Fiber Bragg Grating for All Optical Switch and Memory Applications

We solve the coupled mode equations governing the chalcogenide nonlinear fiber Bragg gratings (FBGs) numerically, and obtain the bistability characteristics. The characteristics of the chalcogenide nonlinear FBGs such as: switching threshold intensity, bistability interval and on-off switching ratio are studied. The effects of FBG length and its third order nonlinear refractive index on FBG cha...

متن کامل

A Fiber Optic Seismic Sensor for Unattended Ground Sensing Applications

Fiber optic seismic sensors have been increasingly recognized as promising technologies for many applications, such as intruder detection and perimeter defense systems. Among these, a military seismic sensor is especially challenging because it requires a robust, compact, reliable, easily installable and operated product. This article reports on our recent experimental investigations of a milit...

متن کامل

Acoustic Emission Detection Using Fiber Bragg Gratings

A systematic study of acoustic emission detection using fiber Bragg grating sensors is presented. In this, we attempt to use the fiber Bragg grating to sense the dynamic strain created by a passing ultrasonic wave signal. Our goal is to see if such a sensor is possible, and if so, what the detection sensitivity and limitations will be. To answer these questions, we carried out several experimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010